메뉴 메뉴
닫기
검색
 

상명투데이

  • 상명투데이

생명공학과 기장서 교수 연구팀, 살조물질에 대한 독성 플랑크톤의 글루타치온-S-전이효소 유전자 반응 및 세포예정자살 현상 최초 규명

  • 작성일 2024-03-06
  • 조회수 7779
커뮤니케이션팀


본교 생명공학과 기장서 교수 연구팀은 “살조물질에 대한 독성 알렉산드리움의 글루타치온-S-전이효소(GST) 유전자 반응 및 세포예정자살 현상”을 규명하고 이를 세계적 권위의 학술지인 종합환경과학(Science of the Total Environment) 3월호에 발표했다.

水생태계에서 유해성 플랑크톤의 대량 증식은 심각한 환경문제와 수산업 피해를 일으킨다.

특히, 독성 플랑크톤인 알렉산드리움은 수산물을 독화시켜 식중독 유발 및 경제사회적 문제를 야기한다.

우리나라는 지난 40여년간 코클로디니움 적조와 알렉산드리움의 패류독소로 인해 많은 수산업 피해와 생태계의 건전성이 심각하게 위협받아 왔다.

유해성 플랑크톤 대량 증식의 원인은 육지로부터 과도하게 유입되는 영양염류에 의한 수생태계의 부영양화와 수온 상승에 의한 것으로 해석돼 왔다.

이에, 독성 플랑크톤의 대발생과 피해를 방제하기 위해 활성 염소, 황산구리, 제초제, 황토 등의 살조물질로 이를 처리한다.

독성 플랑크톤인 알렉산드리움은 환경 오염물질과 살조물질 처리에도 불구하고 생존하는 특성을 보인다. 알렉산드리움은 거대한 게놈 유전체(인간의 30배)와 독특한 유전자를 갖고 있어 이들의 생존전략과 연관이 있는 것으로 추정됐다.

기장서 교수 연구팀은 본 연구를 통해 독성 알렉산드리움은 살조물질과 환경 오염물질에 노출되면 세포내 활성산소가 생성돼 산화적 스트레스를 격게 되고 특이적인 GST 반응의 해독과정을 통해 생존하게 되고, PCB(폴리염화비페닐)와 같은 환경호르몬에 대해서는 세포예정자살 현상을 보이며 사멸하게 된다는 것을 밝혀냈다.

또한, 알렉산드리움은 많은 수의 GST와 고유한 chi-GST를 갖고 있으며 살조물질과 오염물질에 특이적으로 작용하는 것을 규명하는 큰 성과를 거뒀다.

본 연구결과는 독성 플랑크톤의 생리적 방어의 기본원리에 대한 연구로 살조물질 선정과 처리 방법 모색에 유용한 정보를 제공한다.

또한 알렉산드리움의 살조 기본원리를 유전체 수준에서 규명하고 지속적인 독성 플랑크톤의 분자제어기법 개발에 폭넓게 활용할 수 있어, 향후 우리나라 수생태계의 건전하고 지속가능한 관리, 수산자원 보호, 어민의 소득증대에 기여할 것으로 기대된다.


Professor Jang-Seu Ki's research team in the Department of Biotechnology at Sangmyung University, South Korea, revealed ‘the glutathione-S-transferase (GST) gene response and programmed cell death phenomenon of Alexandrium exposed to toxic and algaecide substances,’ and published the results in 2024 March issue of ‘Science of the Environment’, a world-renowned academic journal.

The massive blooms of harmful phytoplankton in the aquatic ecosystem cause serious environmental problems and damage to the fisheries industry worldwide.

In particular, Alexandrium, a toxic phytoplankton, can contaminate marine seafoods, causing food poisoning and economic and social problems.

In Korea, over the past 40 years, the health of the ecosystem has been seriously threatened, with much damage to the fisheries industry due to Cochlodinium’s red tide and Alexandrium’s shellfish poisonings.

The cause of the massive blooms of harmful phytoplankton has been interpreted as eutrophication of the aquatic ecosystem due to excessive influx of nutrients from land and an increase in water temperature.

Therefore, in order to control the large outbreak and damage of toxic phytoplankton, it is treated with algicidal substances such as active chlorine, copper sulfate, herbicides, or yellow clay.

Alexandrium, a toxic phytoplankton, shows the characteristics of surviving despite treatment with environmental pollutants and algaecides. Alexandrium has a large genome (30 times larger than that of humans) and unique genes, which are believed to be related to its survival strategy.

Through this study, Professor Ki Jang-Seu's research team found that when toxic Alexandrium is exposed to algicides and environmental pollutants, intracellular reactive oxygen species are generated, causing oxidative stress. It may survive through the detoxification process involved specific GSTs, and PCBs (Polychlorinated Biphenyls) undergo oxidative stress as well. It was discovered that endocrine disrupting chemicals such as PCBs cause apoptosis and cause death.

In addition, Alexandrium has a large number of GSTs and unique chi-GST, and this work has achieved great results in identifying those that act specifically on algicides and pollutants.
 
The present results are a study on the basic principles of physiological defense of toxic phytoplankton, providing useful information for selecting algicidal substances and finding potential treatment methods.
 
In addition, the basic principles of Alexandrium's cell death can be identified at the genome level and can be used in the development of molecular control techniques for toxic phytoplankton. It is expected to contribute to the sound and sustainable management of Korea's aquatic ecosystem, protection of fishery resources, and increase of fishermen's income in the future.